Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability.

نویسندگان

  • Ho Cheung Shum
  • Jin-Woong Kim
  • David A Weitz
چکیده

We describe a versatile technique for fabricating monodisperse polymersomes with biocompatible and biodegradable diblock copolymers for efficient encapsulation of actives. We use double emulsion as a template for the assembly of amphiphilic diblock copolymers into vesicle structures. These polymersomes can be used to encapsulate small hydrophilic solutes. When triggered by an osmotic shock, the polymersomes break and release the solutes, providing a simple and effective release mechanism. The technique can also be applied to diblock copolymers with different hydrophilic-to-hydrophobic block ratios, or mixtures of diblock copolymers and hydrophobic homopolymers. The ability to make polymer vesicles with copolymers of different block ratios and to incorporate different homopolymers into the polymersomes will allow the tuning of polymersome properties for specific technological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of polymersomes with double bilayers templated by quadruple emulsions.

Polymersomes, vesicles composed of bilayer membranes of amphiphilic block-copolymers, are promising delivery vehicles for long-term storage and controlled release of bioactives; enhanced stability of the membrane makes polymersomes potentially useful in a wide range of biological delivery applications by comparison with liposomes. However, unilamellar structure is intrinsically fragile when sub...

متن کامل

Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability.

Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these...

متن کامل

Formation of Well-Defined, Functional Nanotubes via Osmotically Induced Shape Transformation of Biodegradable Polymersomes

Polymersomes are robust, versatile nanostructures that can be tailored by varying the chemical structure of copolymeric building blocks, giving control over their size, shape, surface chemistry, and membrane permeability. In particular, the generation of nonspherical nanostructures has attracted much attention recently, as it has been demonstrated that shape affects function in a biomedical con...

متن کامل

Synthesis of monodisperse biodegradable microgels in microfluidic devices.

Microgels are promising materials in drug delivery and biomedicine. Although monodisperse microgels would offer considerable advantages, most microgels investigated and used today are polydisperse in size. We report on the fabrication of 10 mum sized monodisperse microgels by emulsifying an aqueous dextran-hydroxyethyl methacrylate (dex-HEMA) phase within an oil phase at the junction of microfl...

متن کامل

Polymersomes containing a hydrogel network for high stability and controlled release.

Capillary microfluidic devices are used to prepare monodisperse polymersomes consisting of a hydrogel core and a bilayer membrane of amphiphilic diblock-copolymers. To make polymersomes, water-in-oil-in-water double-emulsion drops are prepared as templates through single-step emulsification in a capillary microfluidic device. The amphiphile-laden middle oil phase of the double-emulsion drop dew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 29  شماره 

صفحات  -

تاریخ انتشار 2008